DISCIPLINE:	SEMESTER: NAME OF THE TEACHING FACUL 2ND Sem Mr.GANESH MAHARATHY No of Days/Per week Semester From Date: 29/01/20/			ГНҮ	
SUBJECT: ENGINEERING MATHEMATICS II	No of Days/Per week class allotted: 5 Class P/W(75)	Semester From Date:29/01/2024 To Date:14/05/2024 No. Of Weeks: 15			
WEEK	CLASS DAY	THEORY TOPICS RE PART-1 (VECTOR ALGEBRA)		EMARKS	
	1 _{st}	Introduction	Date	Dean/Prin cipal	
	2nd	Types of vectors (null vector, parallel vector , collinear vectors) (in component form)			
1 st	3rd	Types of vectors (null vector, parallel vector , collinear vectors) (in component form)			
	4 _{th}	Types of vectors (null vector, parallel vector, collinear vectors) (in component form)			
	5 _{th}	Representation of vector			
	1 st	Magnitude and direction of vectors			
	2 _{nd}	Addition and subtraction of vectors			
2nd	3rd	Position vector			
	4 _{th}	Scalar product of two vectors			

l	5th	Geometrical meaning	
	Jth	of dot product	
	1 st	Angle between two	
		vectors	
	2nd	Scalar and vector	
		projection of two	
		vectors	
	3rd	Scalar and vector	
		projection of two	
		vectors	
3rd	4 _{th}	Vector product and	
		geometrical meaning	
		(Area of triangle and	
		parallelogram)	
	5th	Vector product and	
		geometrical meaning	
		(Area of triangle and	
		parallelogram)	
	1st		
		PART 2) LIMITS AND CONTINUITY :	
		Definition of function,	
		based on set theory	
	2 _{nd}	Types of functions	
$4_{ m th}$			
-+ tn	3rd	Constant function	
	Ind	Constant function	
	4_{th}	Identity function	
	5th	Absolute value	
		function	
	1st	The Greatest integer	
	151	function	
	2nd	Trigonometric function	
	3rd	Exponential function	
5th			
I			

I	4		
	4_{th}	Logarithmic function	
	5th	Existence of limit	
	1 st	Methods of evaluation	
		of limit	
	2nd	Definition of continuity	
	2110	of a function at a point	
		and problems based on	
		it	
		· ·	
	3rd		
6th		<u>PART 3)</u> DERIVATIVES:	
		Derivative of a	
		function at a point	
	4 _{th}	Derivative of a	
		function at a point	
		r · ·	
	5th	Algebra of derivative	
	Jui		
	1 st	Algebra of derivative	
	2	Algebra of derivation	
	2nd	Algebra of derivative	
	3rd	Derivative of standard	
$7_{ m th}$		functions	
	4_{th}	Derivative of standard	
		functions	
	5 _{th}	Derivative of standard	
		functions	
	1 st	Derivative of	
		composite function	
		(Chain Rule)	
	2nd	Derivative of	
		composite function	
		(Chain Rule)	
1			

1			
	3rd	e) Methods of	
		differentiation of	
		i) Parametric function	
		ii) Implicit function	
		iii) Logarithmic	
0		function	
8th			
	4.	a) Mathada af	
	4_{th}	e) Methods of	
		differentiation of	
		i) Parametric function	
		ii) Implicit function	
		iii) Logarithmic	
		function	
		lanction	
	5th	e) Methods of	
	Jm	differentiation of	
		i) Parametric function	
		ii) Implicit function	
	1 st	e) Methods of	
		, differentiation of	
		i) Parametric function	
		ii) Implicit function	
		iii) Logarithmic	
		function	
	2nd	iv) a function with	
		respect to another	
		function	
9 _{th}			
	3rd	iv) a function with	
		respect to another	
		function	
	4 _{th}	iv) a function with	
	'+ th	-	
		respect to another	
	5	function	
	5th	f) Applications of	
		Derivative	
		i) Successive	
		Differentiation (up to	
	1st	f) Applications of	
		Derivative	
		i) Successive	
		Differentiation (up to	
-			

	2nd	f) Applications of Derivative i) Successive Differentiation (up to	
10 _{th}	3rd	f) Applications of Derivative i) Successive Differentiation (up to	
	4 _{th}	PART 4) INTEGRATION : Definition of integration as inverse of differentiation	
	5th	Definition of integration as inverse of differentiation	
	1 st	Integrals of standard functions	
	2nd	Integrals of standard functions	
	3rd	Integrals of standard functions	
11th	4 _{th}	c) Methods of integration i) Integration by substitution ii) Integration by parts	
	5th	c) Methods of integration i) Integration by substitution ii) Integration by parts	

	1 st	 c) Methods of integration i) Integration by substitution ii) Integration by parts 	
	2nd	Integration of some special functions.	
12th	3rd	Integration of some special functions.	
	4 _{th}	Integration of some special functions.	
	5th	Definite integral, properties of definite integrals	
13th	1st	Definite integral, properties of definite integrals	
	2 _{nd}	Application of integration i) Area enclosed by a curve and X – axis ii) Area of a circle with centre at origin	
	3rd	Application of integrationi) Area enclosed by a curve and X – axisii) Area of a circle with centre at origin	
	4 _{th}	PART 5) DIFFERENTIAL EQUATION : Order and degree of a differential equation	
	5th	Order and degree of a differential equation	

	1st	Solution of differential	
	1.50	equation	
		i) 1st order and 1st	
		degree equation by the	
		method of separation	
		of variables	
		ii) Linear equation	
		dy/dx + py = Q, where	
		P,Q are functions of x	
	2nd	Solution of differential	
		equation	
		i) 1st order and 1st	
		degree equation by the	
		method of separation	
		of variables	
		ii) Linear equation	
		dy/dx + py = Q, where	
		P,Q are functions of x	
	2		
	3rd	Solution of differential	
		equation	
14th		i) 1st order and 1st	
		degree equation by the	
	4_{th}	Solution of differential	
		equation	
		i) 1st order and 1st	
		degree equation by the	
		method of separation	
		of variables	
		ii) Linear equation	
		dy/dx + py = Q, where	
		P,Q are functions of x	

	5th	Solution of differential equation i) 1st order and 1st degree equation by the method of separation of variables ii) Linear equation dy/dx + py = Q, where P,Q are functions of x
	1 st	Solution of differential equation i) 1st order and 1st
	2nd	decrease connections but theSolution of differentialequationi) 1st order and 1stdegree equation by themethod of separationof variablesii) Linear equation $dy/dx + py = Q$, whereP,Q are functions of x
	3rd	Solution of differential equation i) 1st order and 1st degree equation by the method of separation of variables ii) Linear equation dy/dx + py= Q , where P,Q are functions of x
15th		

-			
	$4_{ m th}$	Solution of differential	
		equation	
		i) 1st order and 1st	
		degree equation by the	
		method of separation	
		of variables	
		ii) Linear equation	
		dy/dx + py = Q, where	
		P,Q are functions of x	
	5th	Solution of differential	
	Jui	equation	
		i) 1st order and 1st	
		degree equation by the	
		method of separation	
		of variables	
		ii) Linear equation	
		dy/dx + py = Q, where	
		P,Q are functions of x	

Gnehosi's Das

Chittaraijan Parida

B

DEAN

PRINCIPA L

HOD